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Abstract—Surface tension driven flow in a cylindrical melt suspended between two rods was investigated
by numerical solution of the steady state differential equations for heat and momentum transfer
Radiation heating and electron beam heating were considered approximately. For small values of the
driving force, one rotating ring was formed in the top half of the zone, and its mirror image in the
bottom half. At larger driving forces, secondary cells form which probably would undergo oscillatory
motion. The influence of Prandtl number, zone movement, and buoyancy on the convection was also
studied. The primary resistance to mass transfer in the laminar regime was in the center of the zone
rather than at the solid-liquid interfaces.

NOMENCLATURE

radius of the molten zone [cm];

specific heat of melt [cal/g°K];

binary molecular diffusion coefficient
[em?/s];

acceleration {cm/s?];

Grashof number for heat transfer

[9B(To— Ta®*];

Grashof number for mass transfer
[gawoa®/];

integer denoting grid station in axial
direction, i =1,2,3,...,m;

integer denoting grid station in radial
direction, j =1,2,3,...,n;

thermal conductivity of melt [cal/cms°C};
interfacial distribution coefficient, wo/w at
freezing interface (z = —1);

one-half of the liquid zone length [cm];
integer denoting the last grid station in axial
direction;

dimensionless surface tension parameter at
the free melt surface p ra(Tp— T,,)(0y/0T)/u?;
Marangoni number, (3y/0T)qa’p s C,/k*p;
integer denoting the last grid station in radial
direction;

pressure in the melt;

Prandt] number, uC,/k;

heat transferred from heater to zone;

radial coordinate, measured from the center
of the zone [cm];

dimensionless radial coordinate, r/a;
Schmidt number, u/p,D;

temperature [°K];

temperature of surroundings [°K];
temperature at r = a, z = 0 [°K];

interfacial temperature (melting point) [°K];
(To—To);

zone travel rate (taken to be positive in the

z direction) [em/s];

*Present address: Department of Chemical Engineering,
Clarkson College of Technology, Potsdam, N.Y. 13676.
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Uy, radial velocity component of the melt
[cm/s];

Uz, axial velocity component of the melt
[cm/s];

V., dimensionless zone travel rate, v.a/v,

V.,  dimensionless radial velocity component of
the melt, v,a/v;

V,,  dimensionless axial velocity component of
the melt, v, a/v;

w, weight fraction impurity in melt at z and r;

we,  weight fraction impurity in feed, assumed
uniform;

w,,  weight fraction impurity in product at r;

z, axial coordinate, measured from the center
of the zone [cm];

Z, dimensionless axial coordinate, z/a.

Greek symbols

o, (Ops/ow)ipy;

B, (@os/0T)py;

s surface tension between melt and vapor
[dyne/cm];

&, emissivity of thermal radiation;

0, dimensionless temperature, (T— T,,)/AT;

6., dimensionless temperature of the
surroundings, (7. — T,,)/AT;

U viscosity of the melt [g/cms];

v, kinematic viscosity, u/p, [cm?/s];

pe,  density of the crystal [g/em?];

ps,  density of the melt [g/em®];

o, Stefan—Boltzmann constant, 5-668 x 1073
[erg/em? s°K*];

O, dimensionless impurity concentration, w/wg;

¥, dimensionless stream function, defined such

1 oy 1 oy

that V, = R 7 and V, = “R 3R’

w, dimensionless vorticity,

ov, av, 1 (% 1oy &y

9z R R <6R2 R 6R+6ZZ>'
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INTRODUCTION
FLOATING zone melting is used commercially and in
research for crystal growth and for purification of high
melting materials [1, 2]. The melt does not contact a
crucible, as shown schematically in Fig. 1. The melt is
held by surface tension forces in opposition to gravity,
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F1G. 1. Geometry, coordinate system and fluid velocity
components for floating zone melting.

thereby limiting the possible diameter of the zone on
carth. Heating may be by radiation, by an electron
beam, or by induction from a surrounding high
frequency coil. The zone is moved through the solid
either by moving the heater or by moving the solid
rods bordering the zone. There are five sources of
convection in a floating zone:

(1) Whep the zone is taken as stationary, there is a
flow through the zone generated by melting at one
solid-liquid interface and freezing at the other, due to
movement of the zone through the solid [3].

(2) Convection due to rotation of the two solid rods.
(Slow rotation is sometimes used to maintain a cylin-
drical zone and growing rod.)

(3) With induction heating one obtains electro-
magnetic stirring, which is probably impossible to
calculate.

(4) Buoyancy-driven natural convectiondue to inter-
action of a gravitational or accelerational field with
density variations in the melt caused primarily by
temperature variations.

(5) Surface-tension driven flow due to variations in
surface tension along the melt surface caused primarily
by the variation in temperature along the surface.

Because of the probable exploitation of this process in
space, we were particularly interested in convection in
the absence of gravity (4}.

The purpose of the calculations described here was
to estimate the magnitude of the surface-driven
(Marangoni) flow and its influence on heat and mass

transfer. Mass transfer influences the degree of puri-
fication and the homogeneity of single crystals. Heat
transfer influences the perfection of the crystals, the
stability of the zone, and sometimes influences the
homogeneity as well, through its effect on the freezing
interface shape. In order to determine the influence
of surface driven flow on zone melting, the partial
differential equations for momentum and heat transfer
were considered. Solutions were obtained numerically
for two situations—a parabolic temperature profile
along the melt-vapor surface and for a ring heat source
at the center of the zone. The parabolic temperature
profile corresponds approximately to radiant heating,
and the ring source corresponds to electron beam
heating. The mass-transfer equation coupled with the
computed flow fields were employed to find the im-
purity concentration fields in the melt at steady state.

The results of the calculations are expressed in
dimensionless form and for the physical properties of
silicon with a 1 x 1cm zone, as a concrete example.
For molten silicon the melting point is 1410°C, the
Prandtl number is 0-023, the Schmidt number is about
5, p,(@v/8T)/u* is 14000, and the emissivity is assumed
to be 0-3 for both the melt and the solid. Much to
our surprise, earth’s gravitational field and ordinary
zone travel rates were found to have negligible influence
on the convection for silicon.

The results are not exact insofar as the assumed
shape of the zone and the assumed heat-transfer con-
ditions do not correspond precisely to experimental
conditions. Nevertheless the results show the type and
magnitude of the phenomena expected.

EQUATIONS

Incompressible axisymimetric steady state flow in the
molten zone is assumed, with constant properties. The
zone is taken to be a circular cylinder with planar
solid-liquid interfaces and an aspect ratio l/a of unity
(which are typical operating conditions, to the first
approximation}.* It was assumed that there was no
crystal rotation. The pertinent differential equations
and boundary conditions are as follows:

Momentum and continuity equations

v, v, Oy,
o r Oz

dv, N v,
24 ar UZE) =

=0 (1)

_ﬁ_)_ 6zv,+1 v, v,+62u, 5
o M T AR @
" v, v\
P\ ar Tz
oP 0%, ldv, &%,
_5;+ﬂ<5r2 et 622)_9 )

*On earth, the zone deviates from a cylindrical geometry
primarily because of gravity, while in space the small vari-
ations in surface tension will cause small deviations in shape.
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Boundary conditions are

(a) At z = [ (melting interface);

v,=0, v, = ——vce)i)
!

(b) At z = —I(freezing interface);

U = 0, Uy = —UL‘(;)C>
P

(c} Atr= 0 (along axial axis);

v,
= P 0
b =0, or

(d) At r = a (free melt surface);

Urz()a

ov, oy
B

o 0

[&]

The pressure terms in the equations (2) and (3) are
eliminated to obtain the momentum and continuity
equations in the form of stream function, i, as follows:

oy % 1% ™ 28 2 oy
EEE(W_EEE 0R® R OR? Féﬁ)

1oy 8 [éd &%y 1oy 1 oy 8%
“Ea_Rgz'(é?“Léﬁ’f"ia_R)_Fﬁa’if

1 o/ 0 1oy
+Fﬁ(_b§7+’§5§

w<2 2 By v v 28
5Z7%GR® R 0Z%GR  0Z° GR® R GR®
+iaz_‘1’_3.?i‘.f.’.>
R?9R: R’ oR

+Gry(08/0R) + Gr(0®/0R) = 0. (4

The boundary conditions in the form of stream function

are:

(a) At Z = lfa; %:0,11,:12;%(%)

(b) At Z = —l/a; %';Qk&:RZVCQ—;)

(© AtR=0; ‘;,zo,*%___o

(@ AtR=1; =§(%>,%_%=Mgg

Heat-transfer equations
If the thermal properties are constant and the viscous
dissipation is neglected, the differential equation for

heat transfer is:
0T 10T 0T
k (EZ_ + + ——) . (5

c oT + oT
Vo —+ 0, ——}= ——
Per\Y oz T ar ror  ort

*The stream function at the Z-axis is an arbitrary con-
stant and is taken to be zero.

The boundary conditions for heat transfer are:

(a) Atr=10;

°oT
(b) Atr=a; -—kg— = og,(T*~ T4
r

(c) At {r - g; T = T, (ring heat source)
z=

{dAtz=1, T=T,
() Atz=—1;, T=T,.

The above equations are restated in the following
dimensionless form:

Vﬁ_‘_ o0 1 %6 i50+829 ©
*9Z " "OR  Pr\gZ* ROR 4R*)
The boundary conditions in dimensionless form are
6
AtR=0; —=0
(a) % 3R
(b) AtR=1;
09 o 8% (OAT+ T}~ {0,AT+ T} *]
R kAT " ‘ "
R=1 To— T,
(© At{z:o’ g= AT
) AtZ=1la; 6=0
(e) AtZ= —~lla;, 8=0.

Of the above boundary conditions for momentum and
heat transfer, only those applied at the free melt surface
should require any explanation. No material transfer
normal to the surface is assumed; hence v, is zero.
A balance in the stresses of viscous shear and surface
tension gradient leads to the latter portion of boundary
condition (4)d. The heat-transfer boundary conditions
(6)b and ¢ apply only to the problems with a ring
heat source.

For the parabolic temperature profiles with a zone
aspect ratio of one {i.e. a = I), the following dimension-
less parabolic temperature profile equation is used in
place of boundary conditions (6)b and c.

0=1-22 )

The flow field is symmetrical about the z = 0 axis
for a stationary zone at zero gravity. This was tested
by using the boundary condition at the solid/melt
interface (z = — 1) in place of the symmetry boundary
conditionat z = 0.

Mass-transfer equations
The differential equation for mass transfer of the

impurity is

ow ow (@2w

v,——+ 0,

1ow o*w
dz

w- et ate) ©®
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The boundary conditions are

(@) Atr=0; =
ar
Sw
(b) Atr = q; Tw—=0
or

¢) Atz= —1I; kowy, = wvc(—;ﬁ>+D<ﬂ>
f dZ

() Atz=1 wop, = wvc(ﬂc—) + D(M)
Iy

where k; is the ratio of impurity concentration in solid
to that in melt at the freezing interface (usually deter-
mined from the phase diagram). The last two equations
of boundary condition are derived from the interfacial
material balance for the impurity [2].

The above equations are restated in the following
dimensionless forms:

o o 1[é*d 160 3%
Voot ettt O
iz "R s(-[aRZ""R azﬁay} ®
Boundary conditions
o
(a) R
o®
(b R
l o\ 1 d®
N at c(pf>+3c iz
! 1 do
AtZ==; V=ov{2)+
a ) ScdZ
COMPUTATION

One of the typical numerical procedures for calcu-
lating the stream function in an enclosed fluid is to
solve for the vorticity function by a successive iteration
method [4-6] and then find the stream function from
vorticity. Rather than finding the stream function via
the vorticity equation to compute the stream function,
we used equation {4) in a single step. An approximate
solution was obtained at a finite number of equidistant
grid points having coordinates Z = (i—1)AZ and
R =(j—1AR, where i and j are integers. The grid
points (n x m) cover the region from the z-axis to the
free melt surface in the r-direction and from the bottom
interface to the top interface in the z-direction with the
ring heat sources. With the parabolic temperature
profiles, however, a symmetrical flow about the r-axis
is assumed and n x m covers only the mirror image
in the top half. The central finite difference method
{which is synonymous to the parabolic finite difference
method in some literature) was employed for equation
{4), and the development of the approximate equations
are illustrated in Appendix A. The resultant com-
putation molecule is shown in Fig. 2, in which twelve
current values at the nearest neighboring grid points
are required for an explicit computation of the new
stream function. Computations of the stream function
at the grid points next to the liquid/solid interfaces

] tqv&,q
I
m (
- o4 -
| * ‘.
i i ' H
Z .
ool
o
5 [ (H)
Py y b
AZ
3 1
2 fop e
g . J
123 ‘ n=tn
Lor

F1G. 2. The finite difference grid system and the compu-
tational molecules used in the numerical calculations [(I) for
stream function, {II) for temperature and concentration].

and to the axis were made using the boundary con-
ditions. The stream functions at the interior grid points
next to the free liquid surface were calculated by the
interpolation method. The Gauss—Seidel iteration
method [7] was employed for computer calculation,
For M < 350 we obtained convergent solutions when
11 x 11 grid points were used. However, an increased
number of grid points were necessary for convergence
with higher values of M, as shown in Table 1 where
the results are summarized.

Dimensionless vorticities and velocities in the melt
were computed from the stream function resuits. The
calculated flow velocities were utilized for compu-
tations of the temperature and impurity concentration
fields. The same computational scheme was employed
for the analysis of heat and mass transfer. The finite
difference forms of equation (6) for heat transfer, and
of equation (9) for mass transfer resulted in the com-
putation molecule as shown in Fig. 2. The Newton-
Raphson method [7] was used to iteratively solve for
the temperatures at the surfaces because of the non-
linearity of the thermal radiation boundary conditions.
A rapidly converging solution for heat transfer was
attained by using overrelaxation parameter of 1-9 when
the Prandt] number was low (metals). In heat-transfer
analyses with high Prandt! number or in mass-transfer
analyses for high Schmidt number liquids (including
silicon), introduction of the overrelaxation parameter
impaired the convergence. An underrelaxation par-
ameter had to be employed in order to obtain a con-
vergent solution, at the expense of an increased number
of iterations.
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Convergence and accuracy tests were carried out:
(1) by increasing the number of iterations with a more
stringent accuracy limit, and (2) by increasing the num-
ber of grid points for an identical problem. For example,
the former test showed that there was no essential
change in the solution with an increased number of
iterations. The latter test also showed no great differ-
ence in the flow patterns and in the profiles of tempera-
ture and concentration fields, except that the concen-
tration field becomes smoother when M is 350. The
vortex center near the heat source does tend to be
associated with an individual grid point. However, this
tendency does not influence the flow pattern or flow
intensity elsewhere. The results of the grid refinement
test for M = 350 are compared in Table 1 and in
Figs. 6(a) and (b).

RESULTS

Streamlines for a parabolic temperature profile at the
free melt surface (radiation heating)

For simplicity, a parabolic temperature profile along
the melt surface was assumed for our initial calcu-
lations. This enabled us to solve the momentum
equations without simultaneously solving the heat-
transfer equations. A parabolic profile, with a maxi-
mum at the center, seems reasonable for radiant
heating. The dimensionless surface tension parameter
M decreases as the radius of the zone “a” and the
temperature variation along the melt surface increases.

Solid

9

Solid

F1G. 3. Computed dimensionless streamlines y for surface

tension driven flow in a floating zone at zero gravity with

a parabolic temperature profile on the free liquid surface

with M = 350and v, = 0. For silicon with (T, — 7;,) = 0-05°C
and a = 0-5cm.

vacuum

Vacuum

F1G. 4. Computed dimensionless streamlines s for surface

tension driven flow in a floating zone at zero gravity with

a parabolic temperature profile on the free liquid surface

with M = 3500 and v, = 0. Silicon with (T, ~T,,) = 0-5°C
and a = 0-5cm.

-0-92
Solid -06 |-08

) 12

V=-0-0l 10

8

-00
Melt Vacuum
Solid

F1G. 5. Computed dimensionless streamlines y for surface

tension driven flow in a floating zone at zero gravity with

a parabolic temperature profile on the free liquid surface

with M = 7000 and », = 0. Silicon with (T, —T,,) =1-0°C
and a = 0-5cm.

In Figs. 3-5, the streamlines for parabolic temperature
profiles are shown to illustrate the effect of increased
values of M (350, 3500 and 7000). Donut-shaped vortex
cells were formed. With M = 35 and 350 only two cells
are generated, and the centers of the vortices move
closer toward the liquid/solid interfaces as M increases.
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With M = 3500, however, which corresponds to a con-
dition of a = 0-5cm and (T, — T;,) = 0-5°C for silicon,*
secondary vortex cells were induced behind the primary
vortex, as shown in Fig. 4. As the value of M was
further increased up to 7000, third and fourth vortices
were produced, as shown in Fig. 5. These multiple
vortices are probably indicative of oscillations and
incipient turbulence, which cannot be calculated in a
steady state analysis (oscillations are frequently found
with free convection in enclosed cavities between
laminar and fully turbulent flow). The maximum
velocity of the melt for 1 cmdia silicon with (T—T,,) =
1-0°C is calculated to be 2cm/sec.

Fluid flow coupled with heat transfer (electron beam
heating)

Electron beam heating is commonly used in floating
zone melting and was considered as another heating
mode. A ring heat source at the center of the zone
(z = 0) was assumed. Rather than specify the power
input, the circumferential temperature T at the center
of the zone was specified for convenience in analysis.
The procedure used to solve the coupled heat-
momentum transport problem was as follows.

(1) The temperature field for conduction was com-
puted by neglecting convective heat transfer.

(2) The surface temperature profile from (1) was
utilized to calculate the first approximate solution of
fluid flow.

(3) The temperature field was recalculated using the
flow fields from (2).

(4) Steps (2) and (3) were repeated until the tem-
perature and the fluid flow fields no longer changed
appreciably.

The resulting streamlines with M = 3507 are drawn
in Fig. 6 in which we took values for silicon with the
surroundings at the melting point, i.e. the heat shielding
about the zone is extremely effective. While this does
not correspond exactly with reality, it does show the
correct features. Comparing with Fig. 3, we see that
the vortex centers are shifted nearer to the heat source
from the liquid-solid interfaces. This is because the
steepest temperature gradient is at the center of the
zone. The maximum velocity for silicon was 0-55cm/s.
Comparing the temperature fields with surface tension
driven flow for M = 350 with those for pure conduc-
tion, there was no significant change except for a slight
one near the center of the zone. This indicates that
conduction is much greater than convective heat trans-
fer as would be expected for the small Prandt! number
for silicon. The vorticity fields for M = 350 are shown
in Fig. 7. The maximum vorticity and its location for
various conditions are also summarized in Table 1.

*Without heat shielding, i.e. without thermal radiation
reflectors about the zone or an auxiliary furnace, we estimate
the temperature difference (T, — T,,) would be on the order
of 10-20°C, and the flow would be turbulent.

tFor electron beam heating of 1 cm dia silicon, the
Marangoni number Ma is about 1/50 of the value of M.
Without heat shielding Ma is estimated to be about 60000.

vacuum

Solid

F1G. 6(a). Isotherms 6 and streamlines ¥ at zero

gravity for electron beam heating of silicon with

(To—T,) =005°C, T,=T,, ¢, =03, a=05cm,

M =350, Pr=0023, v, =0. Calculation per-
formed with 11 x 21 grid.

Solid

Vacuum

Solid

F1G. 6(b). Isotherms 6 and streamlines ¢ for the same con-
ditions as in Fig. 6(a). Calculation performed with 21 x 41
grid.

Influence of gravity on flow

In a vertical silicon melt with M = 350 at earth’s
gravity the flow and temperature fields in the floating
zone do not change appreciably from those at zero g.*

*Only temperature variations were considered.
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Vacuum

2400

F1G. 7. Dimensionless vorticity field « corre-
sponding to the streamline field shown in Fig. 6(a).

When the acceleration is increased to ten times the
earth’s gravity, the lower vortex contracts while the
upper one is expanded, particularly at the center of the
zone where the flow field is relatively weak. This is
shown in Fig. 8 and may be compared with Fig. 6 at
zero g. This means that surface driven flow predomi-
nates even on earth for many materials for radiant
and electron beam heating. It may even be important
when induction heating is employed and may account
for some of the compositional inhomogeneities
observed.

Vacyum

F1G. 8. Streamlines ¢ and isotherms 8 for combined surface-
driven and buoyancy-driven flow with Gr, = 775. Other
conditions are the same as Fig. 6(a).

Vacuum

Solid

FIG. 9. Isotherms 8 and streamlines § for the same condi-
tions as in Fig. 6(a), except Pr = 2.

Influence of Prandt! number

The Prandtl number was increased from 0-023 to 0-3
and 2-0 by increasing the specific heat, and keeping the
viscosity and the thermal conductivity of the melt
constant. As the Prandtl number increases, the tem-
perature gradients along the free liquid surface (for
fixed Tp,— T,,) increase near the heat source and also
near the liquid-solid interfaces, but decrease signifi-
cantly in between. Since the convective heat transfer
becomes more significant as a result of increasing the
Prandtl number, the isotherms are increasingly dis-
torted from those of pure conduction. This, in turn,
causes changes in the flow field. For example, the center
of the vortex cell near the liquid-solid interface shifts
closer to the interface as the Prandtl number increases,
as shown in Fig. 9.

Influence of zone travel on hydrodynamics

The effect of zone motion on the flow field was found
to be negligible in all of our calculated streamlines for
zone travel rates of up to Scm/h in silicon.* However,
the effect becomes significant when the zone travel rate
becomes comparable with the velocity of surface-driven
flow.

The flow field for electron beam heating with M = 35
is taken as a model case in order to show the influence
of zone travel on hydrodynamics in the floating zone.
The maximum velocity of the melt for M =35 is
0-07cm/s (or 250cm/h), and the average velocity is
about 70cm/h. In Fig. 10, the streamlines in floating
zone melting of silicon at zero g are shown for a
freezing rate of 30cm/h. The lower vortex cell floats
away from the bottom interface and its size is reduced
as the zone travel rate increases.

*A zone travel rate of 5cm/h is typical for growth of
single crystals, while faster rates are employed for vacuum
outgassing and lower rates for zone refining.
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Melting intertace

Freezing interface

FiG. 10. Streamlines  at a zone travel rate of 30 cm/h with
M = 35, Pr=0-023. For silicon, a =05cm, (T~ T,) =
0-005°C, T, = T,,, &, = 0-3.
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formed with 21 x 41 grid.
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F1G. 12, Impurity concentration profiles in the axial direc-
tion at R =0, 0-5 and 1-0 under the same conditions as
Fig. 11,

Impurity segregation

Steady state* impurity concentration fields in the
melt were calculated by introducing the convection
fields for M = 350 with zone motion. The values used
in the present computations are: Sc = 50, p, = 228 g/
em?, p; = 254g/em?, ky =01, a =0-5cm and D=
7-6 x 10~ *cm?/s, which are typical for silicon with
aluminum or indium impurity. The dimensionless im-
purity concentration fields at steady state are shown in
Fig. 11 for a freezing rate v, of Scm/h (¥, = 0-183).
The dimensionless impurity concentration profiles in
the axial direction at R= 0, 0-5 and 1-0 are plotted
in Fig. 12 for freezing rates of 1 cm/h and Scm/h. The
magnitude of the mass-transfer resistance is indicated
by the rate of change of concentration with distance.
Note that it is higher at the center of the zone because
of the poor mixing between the top and bottom cells.
This is to be contrasted with boundary-layer flow in
which the mass-transfer resistance is concentrated near
solid-liquid interfaces.

CONCLUSION

For silicon we have seen that surface tension driven
flow is very vigorous, and is turbulent when heat shields
are not employed. The buoyancy flow is negligible in
comparison. With moderate heat shielding, oscillatory
convection is likely, but was not studied here. Zone
motion does not have an appreciable effect on the
convection unless the temperature gradients along the
melt surface are made very small by effective heat
shielding. With laminar flow, the convection has only

*When zone melting is initiated the impurity concen-
tration in the melt increases (for ky < 1) until the same
average concentration is freezing out of the melt as is being
fed into the melt at the other interface. It takes several zone
lengths of zone movement with convective mixing in the
zone until this steady state is reached.
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a small influence on heat transfer at small Prandil
number (Pr « 1}, but a large influence for Pr> 1. The
laminar flow celis would lead to significant inhomo-
geneities in the melt during zone melting. This, in turn,
would cause inhomogeneities in the resulting crystals.
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APPENDIX
Finite-Difference Scheme for Momentum Equation
(I) The following approximations are used for the equa-
tion (4).
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(II) The following approximate equation is used for the
equation of boundary condition of {4)d.

Wiw 1

e R s 2
R ~2(AR)2~n6(AR){(8¢""_‘ Yin-2) +4MZ(AR)}.

ANALYSE DE L'ECOULEMENT PROVOQUE PAR LA TENSION SUPERFICIELLE
DANS UNE ZONE FLOTTANTE EN FUSION

Résumé—On étudie numériquement les équations aux dérivées particlies des transferts de chaleur et de
quantité de mouvement, en régime permanent pour un écoulement provoqué par la tension superficiells
dans un bain cylindrique suspendu entre deux tiges. On tient compte de fagon approchée des chauffages
par rayonnement et par bombardement électronique. Pour des faibles valeurs des forces de tension, un
anneau tournant se forme dans la moijtié supérieure de la zone avec son symétrique dans la moitié
inférieure. Pour de plus grandes valeurs, il se forme des cellules secondaires qui doivent probablement
prendre un mouvement oscillatoire. On étudie I'influence sur la convection du nombre de Prandt], du
mouvement de la zone, et de la gravité. La résistance au transfert massique laminaire est plus importante
au centre de la zone qu’aux interfaces solide-liquide.

ANALYSE DER DURCH OBERFLACHENSPANNUNG ERZEUGTEN STROMUNG
iIM FLIESSZONENSCHMELZEN

Zusammenfassung—Fiir die von der Oberflichenspannung erzeugte Stromung in einer zylindrischen
Schmelze zwischen zwei Stiiben wurde eine numerische Losung aufgrund der stationdren Differential-
gleichung fiir Warme- und Stoffiibergang angegeben. Strahlungsheizung und Elektronenstrahlheizung
wurden niherungsweise berticksichtigt. Fiir kleine Werte der treibenden Kraft formte sich ein rotierender
Ring in der oberen Hiilfte der Zone und ein Spiegelbild in der unteren Hilfte. Bei groBeren Antriebskriiften
ergaben sich sekundédre Zellen, die wahrscheinlich eine oszillierende Bewegung ausfiihren wiirden, Der
EinfluB der Prandtlzahl, der Zonengeschwindigkeit und des Auftriebs auf die Konvektion wurde ebenfalls
untersucht. Der Hauptwiderstand fiir den Stoffaustausch im Laminarregime ergab sich eher im Mittelpunkt
der Zone als an der fest-flissigen Schicht.
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AHAJIN3 TEYEHWSA 1104 OEWACTBUEM NMOBEPXHOCTHOIO HATAXEHUA
PY NJABJIEHHMH NTOABMXHOM 30HBI

Aunmoraypn — Teuenue nox AeHCTBHEM MNOBEPXHOCTHOIC HATSIKEHHMA LMIHHADHYECKOrO Dacriaba,
3AKMIOYEHHOIO MEXIY ABYMS CTEPKHSMHU, MCCAEAOBANIOChH OYTEM YHCIHEHHOTO PelueHMs CTAalHOo-
HapHux nuddepeHIHANBHLIX YDABHEHHI NEpEHOca Tea M KOJMYecTBa nBuwxeHns, JIyvuucTnii
HAYPEB ¥ HATPEB JICKTPOHHBIM JIYHOM PACCMATPHBANHCE TPHOTHKRenHo, [Tpu HeBOILUIHX 3HAYCHAAX
JBROKYIUEH CHITRI B BEpXHEHR YaCTH 30HK 06pa3ossiBanoch OMHO BpalIaromeecs KOMLLO, a B HIKHeH
oJIOBHYE — €ro 3epKanbioe orobpaxenue. Ilpr Goliee BHICOKHX 3HAYCHHAX HBUXYILICH CHIB
oBpasyiOTCH BTODHMHBIE 3IEMEHTHI, NPETEPHEBAIOIIMNE, OYEBHMAHO, KOJIEOATE/ILHOE NBHKEHHE,
Wsywyanocs Takxe Bidasaue uncia [Ipaugriis, ABMOKEHUA 30HB ¥ NONBEMHOHM CHIBL HA IPOUECC
xoupektn. OCHOBHOE CONPOTHRIICHHE NIEPEHOCY MAcChl IIPH TAMHHAPHOM PEKXHAME TeyeHus Habnio-
HAnoCh CKOPEE B LIEHTDE 30HK, HOKEIH HA PAHMUAX Pa3iena TBepHOE TENO-KUAKOCTE.



