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Abstract-Surface tension driven flow in a cylindrical melt suspended between two rods was investigated 
by numerical solution of the steady state differential equations for heat and momentum transfer 
Radiation heating and electron beam heating were considered approximately. For small values of the 
driving force, one rotating ring was formed in the top half of the zone, and its mirror image in the 
bottom half. At larger driving forces, secondary cells form which probably would undergo oscillatory 
motion. The influence of Prandtl number, zone movement, and buoyancy on the convection was also 
studied. The primary resistance to mass transfer in the laminar regime was in the center of the zone 

rather than at the solid-liquid interfaces. 

NOMENCLATURE V’,, 

radius of the molten zone [cm]; 
specific heat of melt [cal/g”K]; 

binary molecular diffusion coefficient 

[cm’isl; 
acceleration [cm/s2]; 
Grashof number for heat transfer 

[sP(T, - Lh3/v21; 
Grashof number for mass transfer 

[sWJ~3/v21; 

K, 
v,, 

K, 

integer denoting grid station in axial 
direction, i = 1,2,3, . . . , m; 
integer denoting grid station in radial 

direction, j = 1,2,3, . . . , n; 

thermal conductivity of melt [Cal/cm s”C]; 
interfacial distribution coefficient, wO/w at 

freezing interface (z = - I); 

W, 

wo, 

WC, 

Z, 

Z, 

radial velocity component of the melt 

[cm/s] ; 
axial velocity component of the melt 

[cdsl; 
dimensionless zone travel rate, v,a/v; 
dimensionless radial velocity component of 

the melt, v,a/v; 
dimensionless axial velocity component of 

the melt, v,a/v; 
weight fraction impurity in melt at z and r; 

weight fraction impurity in feed, assumed 

uniform; 
weight fraction impurity in product at r; 

axial coordinate, measured from the center 

of the zone [cm]; 
dimensionless axial coordinate, z/a. 

one-half of the liquid zone length [cm]; 
integer denoting the last grid station in axial 

Greek symbols 

direction; 
dimensionless surface tension parameter at 

the free melt surface pfa(To- Tm)(dy/8T)/p2; 
Marangoni number, (dy/3T)qa2pfC,/k2p; 
integer denoting the last grid station in radial 
direction; 

pressure in the melt; 
Prandtl number, PC, Jk; 
heat transferred from heater to zone; 
radial coordinate, measured from the center 

of the zone [cm]; 
dimensionless radial coordinate, r/a; 

Schmidt number, p/p, D; 
temperature [OK]; 
temperature of surroundings c”K]; 
temperature at r = a, z = 0 [OK]; 
interfacial temperature (melting point) [OK]; 

(To-‘4,); 
zone travel rate (taken to be positive in the 
z direction) [cm/s]; 

*Present address: Department of Chemical Engineering, 
Clarkson College of Technology, Potsdam, N.Y. 13676. 
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PL, 

V, 

PC, 

P/j 
Q, 

surface tension between melt and vapor 

[dyne@] ; 
emissivity of thermal radiation; 

dimensionless temperature, (T - Tm)/A T ; 
dimensionless temperature of the 
surroundings, (T, - T,)/AT ; 
viscosity of the melt [g/cm s] ; 
kinematic viscosity, p/pf [cm2/s]; 

density of the crystal [g/cm’]; 

density of the melt [g/cm31 ; 
Stefan-Boltzmann constant, 5.668 x lo-’ 

[erg/cm2 s”K4]; 
dimensionless impurity concentration, w/we; 
dimensionless stream function, defined such 

dimensionless vorticity, 
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INTRODUCTION 

FLOATING zone melting is used commercially and in 
research for crystal growth and for purification of high 
melting materials [l, 21. The melt does not contact a 
crucible, as shown schematically in Fig. 1. The melt is 
held by surface tension forces in opposition to gravity, 

i-_-o- 

Solid 

FIG. 1. Geometry, coordinate system and fluid velocity 
components for floating zone melting. 

thereby limiting the possible diameter of the zone on 
earth. Heating may be by radiation, by an electron 
beam, or by indu~ion from a surrounding high 
frequency coil. The zone is moved through the solid 
either by moving the heater or by moving the solid 
rods bordering the zone. There are five sources of 
convection in a floating zone : 

(1) Whep the zone is taken as stationary, there is a 
flow through the zone generated by melting at one 
solid-liquid interface and freezing at the other, due to 
movement of the zone through the solid [3]_ 

(2) Convection due to rotation of the two solid rods. 
(Slow rotation is sometimes used to maintain a cylin- 
drical zone and growing rod.) 

(3) With induction heating one obtains electro- 
magnetic stirring, which is probably impossible to 
calculate. 

(4) Buoyancy-driven natural convection due to inter- 
action of a gravitational or aecelerational field with 
density variations in the melt caused primarily by 
temperature variations. 

(5) Surface-tension driven flow due to variations in 
surface tension along the melt surface caused primarily 
by the variation in temperature along the surface. 

Because of the probable exploitation of this process in 
space, we were particularly interested in convection in 
the absence of gravity (4). 

The purpose of the calculations described here was 
to estimate the magnitude of the surface-driven 
(Marangoni) flow and its influence on heat and mass 

transfer. Mass transfer influences the degree of puri- 
fication and the homogeneity of single crystals. Heat 
transfer influences the perfection of the crystals, the 
stability of the zone, and sometimes influences the 
homogeneity as well, through its effect on the freezing 
interface shape. In order to determine the influence 
of surface driven flow on zone melting. the partial 
differential equations for momentum and heat transfer 
were considered. Solutions were obtained numerically 
for two situations-a parabolic temperature profile 
along the melt-vapor surface and for a ring heat source 
at the center of the zone. The parabolic temperature 
profile corresponds approximately to radiant heating, 
and the ring source corresponds to electron beam 
heating. The mass-transfer equation coupled with the 
computed flow fields were employed to hnd the im- 
purity concentration fields in the melt at steady state. 

The results of the calculations are expressed in 
dimensionless form and for the physical properties of 
silicon with a 1 x 1 cm zone, as a concrete example. 
For molten silicon the melting point is 141o”C, the 
Prandtl number is 0.023, the Schmidt number is about 
5,ps(8y/L7T)/~* is 14000, and the emissivity is assumed 
to be 0.3 for both the melt and the solid. Much to 
our surprise, earths gravitational field and ordinary 
zone travel rates were found to have negligible influence 
on the convection for silicon. 

The results are not exact insofar as the assumed 
shape of the zone and the assumed heat-transfer con- 
ditions do not correspond precisely to experimental 
conditions. Nevertheless the results show the type and 
magnitude of the phenomena expected. 

EQUATIONS 

Incompressible axisymmetric steady state flow in the 
molten zone is assumed, with constant properties. The 
zone is taken to be a circular cylinder with planar 
solid-liquid interfaces and an aspect ratio l/a of unity 
(which are typical operating conditions, to the first 
approximation).* It was assumed that there was no 
crystal rotation. The pertinent differential equations 
and boundary conditions are as follows: 

Momentum and continuity equations 

(1) 

*On earth, the zone deviates from a cylindrical geometry 
primarily because of gravity, while in space the small vari- 
ations in surface tension will cause small deviations in shape. 
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Boundary conditions are 

(a) At z = I (melting interface); 

(b) At z = - 1 (freezing interface); 

L‘, = 0, 0, = 
PC 

-v, 0 ~ 
PI 

(cf At r = 0 (along axial axis); 

(d) At r = a (free melt surface); 

au, ay 
t&=0, p-7=7. 

or a2 

The pressure terms in the equations (2) and (3) are 
eliminated to obtain the momentum and continuity 
equations in the form of stream function, $, as follows: 

3 &J 3 a$ 
+$i@-R3z 

1 
+ G~~~a~/~R) + Gr~(a~/aR) = 0. (4) 

The boundary conditions in the form of stream function 
are : 

(a) At Z = l/a; 

(b) At Z = -l/a; 

(c) At R = 0; i,h = 0,* g = 0 

(d)AtR=l; $=; 

Heat-t~a~~~r equations 
Ifthe thermal properties are constant and the viscous 

dissipation is neglected, the differential equation for 
heat transfer is: 

Pcp(vz~+vr~) = k($,tfg+$). (5) 

*The stream function at the Z-axis is an arbitrary con- 
stant and is taken to be zero. 

The boundary conditions for heat transfer are: 

(a) At r = 0; g = 0 

(b) At r = a; -kg = ms(T4-K4) 

(4 At ;I;; T = To (ring heat source) 

(d) At z = I; T = T, 

(e) Atz= -I; T= T,. 

The above equations are restated in the following 
dimensionless form: 

The boundary conditions in d~ensionie~ form are 

(a) At R = 0; E = 0 

(b)AtR=l; 

a8 
- = -2 [{@AT+ T,}~- ~,AT+ T,)4] 
aR 

(d) At Z = l/a; 0 = 0 

(e) At Z = --l/a; 0 = 0. 

Of the above boundary conditions for momentum and 
heat transfer, only those applied at the free melt surface 
should require any explanation. No material transfer 
normal to the surface is assumed; hence v, is zero. 
A balance in the stresses of viscous shear and surface 
tension gradient leads to the latter portion of boundary 
condition (4)d. The heat-transfer boundary conditions 
(6)b and c apply only to the problems with a ring 
heat source. 

For the parabolic temperature profiles with a zone 
aspect ratio of one (i.e. a = f), the following dimension- 
less parabolic temperature profile equation is used in 
place of boundary conditions (6)b and c. 

e = l-22. (7) 

The flow field is symmetrical about the z = 0 axis 
for a stationary zone at zero gravity. This was tested 
by using the boundary condition at the solid~melt 
interface (z = - t) in place of the symmetry boundary 
condition at z = 0. 

Mass-transfer equations 
The differential equation for mass transfer of the 

impurity is 

. (8) 
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The boundary conditions are 

(a) At I = 0; $ = 0 

(b) Atr= (1, %o 
dr 

(cl Atz= -I; ~~vvB~=w~@~+D@ 

where k,, is the ratio of impurity concentration in solid 

to that in melt at the freezing interface (usually deter- 
mined from the phase diagram). The last two equations 
of boundary condition are derived from the interfacial 
material balance for the impurity [2]. 

The above equations are restated in the following 
dimensionless forms : 

Boundary conditions 

(a) At R = 0; g = 0 

(b)AtR=l; g=O 

(c) AtZ=-;; 

(d) At Z = $; 

COMPUTATION 

One of the typical numerical procedures for calcu- 
lating the stream function in an enclosed fluid is to 
solve for the vorticity function by a successive iteration 

method [4-6] and then find the stream function from 
vorticity. Rather than finding the stream function via 
the vorticity equation to compute the stream function, 
we used equation (4) in a singie step. An approximate 
solution was obtained at a finite number of equidistant 
grid points having coordinates Z = (i- l)AZ and 
R = G- l)AR, where i and j are integers. The grid 
points (n x m) cover the region from the z-axis to the 
free melt surface in the r-direction and from the bottom 
interface to the top interface in the z-direction with the 
ring heat sources. With the parabolic temperature 
profiles, however, a symmetrical flow about the r-axis 
is assumed and n x m covers only the mirror image 
in the top half. The central finite difference method 
(which is synon~ous to the parabolic finite difference 
method in some literature) was employed for equation 
(4), and the development of the approximate equations 
are illustrated in Appendix A. The resultant com- 
putation molecule is shown in Fig. 2, in which twelve 
current values at the nearest neighboring grid points 
are required for an explicit computation of the new 
stream function. Computations of the stream function 
at the grid points next to the liquid/solid interfaces 

k----- --~ m 

m- 
m-i 

Z 

1 i 

5 

4 

3 

I- 

2 
--._--- , 

I 

1 1 -R 

FOG. 2. The finite difference grid system and the compu- 
tational molecules used in the numerical calculations [(I) for 

stream function, (II) for temperature and concentration]. 

and to the axis were made using the boundary con- 
ditions. The stream functions at the interior grid points 
next to the free liquid surface were calculated by the 

interpolation method. The Gauss-Seidel iteration 
method [7] was employed for computer calculation. 
For M < 350 we obtained convergent solutions when 
11 x 11 grid points were used. However, an increased 

number of grid points were necessary for convergence 
with higher values of M, as shown in Table 1 where 

the results are summarized. 
D~ensionless vorticities and velocities in the melt 

were computed from the stream function results. The 
calculated how velocities were utilized for compu- 
tations of the temperature and impurity concentration 
fields. The same computational scheme was employed 
for the analysis of heat and mass transfer. The finite 
difference forms of equation (6) for heat transfer, and 
of equation (9) for mass transfer resulted in the com- 
putation molecule as shown in Fig. 2. The Newton- 
Raphson method [7] was used to iteratively solve for 
the temperatures at the surfaces because of the non- 
linearity of the thermal radiation boundary conditions. 
A rapidly converging solution for heat transfer was 
attained by using overrelaxation parameter of l-9 when 
the Prandtl number was low (metals). in heat-transfer 
analyses with high Prandtl number or in mass-transfer 
analyses for high Schmidt number liquids (including 
silicon), introduction of the overrelaxation parameter 
impaired the convergence. An underrelaxation par- 
ameter had to be employed in order to obtain a con- 
vergent solution, at the expense of an increased number 
of iterations. 
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Convergence and accuracy tests were carried out: 

(1) by increasing the number of iterations with a more 
stringent accuracy limit, and (2) by increasing the num- 

ber of grid points for an identical problem. For example, 
the former test showed that there was no essential 
change in the solution with an increased number of 
iterations. The latter test also showed no great differ- 

ence in the flow patterns and in the profiles of tempera- 
ture and concentration fields, except that the concen- 

tration field becomes smoother when M is 350. The 
vortex center near the heat source does tend to be 
associated with an individual grid point. However, this 

tendency does not influence the flow pattern or flow 
intensity elsewhere. The results of the grid refinement 

test for M = 350 are compared in Table 1 and in 

Figs. 6(a) and (b). 

RESULTS 

Streamlines for a parabolic temperature profile at the 
free melt surface (radiation heating) 

For simplicity, a parabolic temperature profile along 

the melt surface was assumed for our initial calcu- 
lations. This enabled us to solve the momentum 
equations without simultaneously solving the heat- 
transfer equations. A parabolic profile, with a maxi- 

mum at the center, seems reasonable for radiant 
heating. The dimensionless surface tension parameter 

M decreases as the radius of the zone “a” and the 
temperature variation along the melt surface increases. 

Solid 

I\ lacuum 

FIG. 3. Computed dimensionless streamlines $ for surface 
tension driven flow in a floating zone at zero gravity with 
a parabolic temperature profile on the free liquid surface 
with M = 350and V, = 0. For silicon with (To - T,) = 0.05”C 

and a = 0.5 cm. 

FIG. 4. Computed dimensionless streamlines $ for surface 
tension driven flow in a floating zone at zero gravity with 
a parabolic temperature profile on the free liquid surface 
with M = 3500 and I), = 0. Silicon with (T,-T,) = 0.5”C 

and a = 0.5 cm. 

FIG. 5. Computed dimensionless streamlines $ for surface 
tension driven flow in a floating zone at zero gravity with 
a parabolic temperature profile on the free liquid surface 
with M = 7000 and U, = 0. Silicon with (T, - T,) = l.O”C 

and a = 0.5 cm. 

In Figs. 3-5, the streamlines for parabolic temperature 
profiles are shown to illustrate the effect of increased 
values of M (350,350O and 7000). Donut-shaped vortex 
cells were formed. With M = 35 and 350 only two cells 
are generated, and the centers of the vortices move 
closer toward the liquid/solid interfaces as M increases. 
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With M = 3500, however, which corresponds to a con- 
dition of a = 0.5 cm and (To - T,) = 0.5”C for silicon,* 
secondary vortex cells were induced behind the primary 

vortex, as shown in Fig. 4. As the value of M was 
further increased up to 7000, third and fourth vortices 
were produced, as shown in Fig. 5. These multiple 

vortices are probably indicative of oscillations and 
incipient turbulence,. which cannot be calculated in a 

steady state analysis (oscillations are frequently found 
with free convection in enclosed cavities between 

laminar and fully turbulent flow). The maximum 
velocity of the melt for 1 cm dia silicon with (T- T,) = 
1VC is calculated to be 2 cm/set. 

Fluid~ow coupled with heat transfer (electron beam 
heating) 

Electron beam heating is commonly used in floating 
zone melting and was considered as another heating 

mode. A ring heat source at the center of the zone 
(z = 0) was assumed. Rather than specify the power 

input, the circumferential temperature To at the center 

of the zone was specified for convenience in analysis. 
The procedure used to solve the coupled heat- 
momentum transport problem was as follows. 

Solid 

FIG. 6(a). Isotherms 0 and streamlines tj at zero 
gravity for electron beam heating of silicon with 
(To - T,) = O.OYC, T, = T,, ss = 0.3, a = 0.5 cm, 
A4 = 350, Pr = 0.023, v, = 0. Calculation per- 

formed with 11 x 21 grid. 

(1) The temperature field for conduction was com- 
puted by neglecting convective heat transfer. 

(2) The surface temperature profile from (1) was 

utilized to calculate the first approximate solution of 
fluid flow. 

(3) The temperature field was recalculated using the 
flow fields from (2). 

(4) Steps (2) and (3) were repeated until the tem- 
perature and the fluid flow fields no longer changed 
appreciably. 

The resulting streamlines with M = 350t are drawn 
in Fig. 6 in which we took values for silicon with the 
surroundings at the melting point, i.e. the heat shielding 0% 

about the zone is extremely effective. While this does I.0 

not correspond exactly with reality, it does show the 
correct features. Comparing with Fig. 3, we see that 
the vortex centers are shifted nearer to the heat source 
from the liquid-solid interfaces. This is because the 

steepest temperature gradient is at the center of the 
zone. The maximum velocity for silicon was 0.55 cm/s. 

Comparing the temperature fields with surface tension 
driven flow for M = 350 with those for pure conduc- 
tion, there was no significant change except for a slight 
one near the center of the zone. This indicates that 
conduction is much greater than convective heat trans- 
fer as would be expected for the small Prandtl number 
for silicon. The vorticity fields for M = 350 are shown 
in Fig. 7. The maximum vorticity and its location for 
various conditions are also summarized in Table 1. 

FIG. 6(b). Isotherms 0 and streamlines 1(1 for the same con- 
ditions as in Fig. 6(a). Calculation performed with 21 x 41 

grid. 

*Without heat shielding, i.e. without thermal radiation 
reflectors about the zone or an auxiliary furnace, we estimate 
the temperature difference (To - Tm) would be on the order 
of lo-2o”C, and the flow would be turbulent. 

tFor electron beam heating of 1 cm dia silicon, the 
Marangoni number Ma is about l/50 of the value of M. 
Without heat shielding Ma is estimated to be about 60000. 

Influence of gravity onflow 
In a vertical silicon melt with M = 350 at earth’s 

gravity the flow and temperature fields in the floating 
zone do not change appreciably from those at zero g.* 

*Only temperature variations were considered. 
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Solid 

Solid 

Solid 

Solid 

FE. 7. Rimensionless vorticity field u) corre- 
sponding to the streamline field shown in Fig. 6(a). 

FIG. 9. Isotherms 8 and streamlines rj for the same condi- 
tions as in Fig. 6(a), except Pr = 2. 

When the acceleration is increased to ten times the 
earth’s gravity, the lower vortex contracts while the 
upper one is expanded, particularly at the center of the 
zone where the flow field is relatively weak, This is 
shown in Fig. 8 and may be compared with Fig. 6 at 
zero g. This means that surface driven flow predomi- 
nates even on earth for many materials for radiant 
and electron beam heating. It may even be important 
when induction heating is employed and may account 
for some of the compositional inhomogeneiti~ 
observed. 

I.0 VOCUURl 

FIG. 8. Streamfines $ and isotherms @ for combined surface- 
driven and buoyancy-driven flow with Gr, = 775. Other 

conditions are the same as Fig. 6(a). 

Influence of Prundtl number 
The Prandtl number was increased from Q023 to O-3 

and 2.0 by increasing the specific heat, and keeping the 
viscosity and the thermal conductivity of the melt 
constant. As the Prandtl number increases, the tem- 
perature gradients along the free liquid surface (for 
fixed To-- T,) increase near the heat source and also 
near the liquid-solid interfaces, but decrease sign& 
cantly in between. Since the convective heat transfer 
becomes more sig~i~cant as a result of increasing the 
Prandtl number, the isotherms are increasingly dis- 
torted from those of pure conduction. This, in turn, 
causes changes in the flow field. For example, the center 
of the vortex cell near the liquid-solid interface shifts 
closer to the interface as the Prandtl number increases, 
as shown in Fig. 9, 

influence of zone trawl on hydrodynumics 
The effect of zone motion on the flow field was found 

to be negligible in all of our calculated streamlines for 
zone travel rates of up to 5 cm/h in silicon.* However, 
the effect becomes sign~cant when the zone travel rate 
becomes comparable with the velocity ofsurfa~-driven 
flow. 

The flow field for electron beam heating with M = 35 
is taken as a model case in order to show the influence 
of zone travel on hydrodynamics in the floating zone. 
The maximum velocity of the melt for M = 35 is 
O.O7cm/s (or 250cm/h), and the average velocity is 
about 70cm/h. In Fig. 10, the streamlines in floating 
zone melting of silicon at zero g are shown for a 
freezing rate of 30cm/h. The lower vortex cell floats 
away from the bottom interface and its size is reduced 
as the zone travel rate increases. 

*A zone travel rate of 5cm/h is typical for growth of 
single crystals, while faster rates are employed for vacuum 
outgassing and lower rates for zone refining. 
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FIG. 10. Streamlines + at a zone travel rate of 30 cm/h with 
M = 35, Pr = 0023. For silicon, a = 0.5 cm, (To - T,) = 

@005”C, T, = T,, & = 0.3. 

Melting interface 

Freezing interface 

FIG. 11. Impurity con~ntration fields @ in a silicon 
melt at steady state for a zone travel rate of 
o, = 5 cm/h, M = 350, Pr = 0,023, SC = 5.0, k. = 0.1, 
D = 7.6 x 10-4crn2/s, a = O-5cm. Calculation per- 

formed with 21 x 41 grid. 

&= Icm/h 

FIG. 12. Impurity con~~tration profiles in the axial direc- 
tion at R = 0, 0.5 and 1.0 under the same conditions as 

Fig. 11, 

Impurity segregation 
Steady state* impurity concentration fields in the 

melt were calculated by introducing the convection 
fields for A4 = 350 with zone motion. The values used 
in the present computations are : SC = 50, pc = 2.28 g/ 
cm3, pr = 2~54g/cm3, k. = 0.1, (I = 0.5cm and D = 
76 x 10V4cm2/s, which are typical for silicon with 
aluminum or indium impurity. The dimensionless im- 
purity concentration fields at steady state are shown in 
Fig. 11 for a freezing rate L’, of Scm/ll (V, = 0.183). 
The dimensionless impurity concentration profiles in 
the axial direction at R = 0, 0.5 and 1.0 are plotted 
in Fig. 12 for freezing rates of 1 cm/h and .5cm/h. The 
magnitude of the mass-transfer resistance is indicated 
by the rate of change of concentration with distance. 
Note that it is higher at the center of the zone because 
of the poor mixing between the top and bottom cells. 
This is to be contrasted with boundary-layer flow in 
which the mass-transfer resistance is concentrated near 
solid-liquid interfaces. 

CONCLUSIOni 

For silicon we have seen that surface tension driven 
flow is very vigorous, and is turbulent when heat shields 
are not employed. The buoyancy flow is negligible in 
comparison. With moderate heat shielding, oscillatory 
convection is likely, but was not studied here. Zone 
motion does not have an appreciable effect on the 
convection unless the temperature gradients along the 
melt surface are made very small by effective heat 
shielding. With laminar flow, the convection has only 

*When zone melting is initiated the impurity concen- 
tration in the melt increases (for k. < 1) until the same 
average concentration is freezing out of the melt as is being 
fed into the melt at the other interface. It takes several zone 
lengths of zone movement with convective mixing in the 
zone until this steady state is reached. 



Analysis of surface tension driven flow 365 

a small influence on heat transfer at small Pram&I 

number @V CK I), but a large inRuence for Pr > 1. The 

kkminar Bow celfs wouId lead to sign&ant inhorn+ 
geneities in the melt during zone melting. This, in turn, 
would cause inhomogeneities in the resulting crystals. 
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APPENDKX 
Finite-Diference Scheme for momentum Equation 

(I) The following approximations are used for the equa- 
tion (4). 

a+ $i+l.j-$i-l,j 
z= WZf 

a+ $i,j*Y-$i.j-Y -= 
im WRf 

a’$ $i+Y.j-2$i,j+cLi-Y,j 
- = .- 

d.z2 (AZ)* 
8’11, $i,j+i -2*i,j+*/i,j-1 

s= (AR)’ 
a”$ $i*y j+y-pi-Y.j+I-~i+Y,j-I~~i-l,j-I 

-.--.-=A - 

83RlLZ 4(~R)(A~) 

a3tL- hi+2 j-2~i+*,j+2~i-Y,j-Ilri-2”: 
- = _--A 

az” 2jAZ)3 

a3$ ~i.j+2-ZJli,j+f+2~i,j-1-~i,j-2 
-..-.-.=:-- 

8R3 2(ARf3 

w 
~ = ~~~[~i+l.j+l-2tViiil.ji-~i-~,j+~i.j+* 

+~i,j-1)+4b(/i,j+~i-l,j+l+~i+l.j-l$3/1-lj-ll. 

(II) The following approximate equation is used for the 
equation of boundary condition of (4)d. 

a$,, -= 
aR 

ANALYSE DE ~~COULEME~ PROVQQUE PAR LA TENSION SUPERFICIALLY 
DANS UNE ZONE FLOTTANTE EN FUSION 

Rismtz-On etudie ~um~riquement les equations aux d&%&s partielles des transferts de chaleur et de 
quantiti: de mouvement, en rt%gime permanent pour un ~ouiement provoque par la tension superficielle 
dans un bain cylindrique suspendu entre deux tiges. On tient compte de fawn approchQ des chauffages 
par rayonnement et par bombardement Clectronique. Pour des faibles valeurs des forces de tension, un 
anneau tournant se forme dans la mojtie superieure de la zone avec son symttrique dans la moitie 
inferieure. Pour de plus grandes valeurs, il se forme des cellules secondaires qui doivent probablement 
prendre un mouvement oscillatoire. On &die l’influence sur la convection du nombre de Prandtl, du 
mouvement de la zone, et de la gravite. La resistance au transfert massique laminaire est plus importante 

au centre de la zone qu’aux interfaces solide-liquide. 

ANALYSE DER DURCH OBERFL~CH~NSPANNUNG ERZEUGTEN STRijMUNG 
IM FLI~SS~ON~NSCHM~~EN 

Zusammenfassung-Fiir die von der Oberflffchenspannung erzeugte Stromung in einer zylindrischen 
Schmelze zwischen zwei Stiiben wurde eine numerische Losung aufgrund der stationaren Differential- 
gleichung fur Warme- und Stoffiibergang angegeben. Strahlungsheizung und Elektronenstrahlheizung 
wurden naherungsweise beriicksichtigt. Filr kleine Werte der treibenden Kraft formte sich ein rotiereuder 
Ring in der oberen Hiilfte der Zone und ein Spiegelbild in der unteren Hllfte. Bei gr(iBeren Antriebskriiften 
ergaben sich sekundare Zellen, die wahrscheinlich eine oszillierende Bewegung ausfiihren wiirden. Der 
Einflubder Prandtlzahl, der ~nenges~hwindi~eit und des Auftriebs auf die Konvektion wurde ebenfalls 
untersucht. Der Hauptwiderstand fur den Stoffaustausch im Laminarreg~me ergab sich eher im Mittelpu~t 

der Zone als an der fest-fliissigen Schicht. 

HMT Vol. 19, No. 4-B 



CHONG E. CHANG and Wa.trm R. Wrrmx 

AHA_JIH3 TE~EHHR IIO.I& ~E~~TB~EM ~OBE~X~O~HOrO HATRXEHMR 
I’fPM I-U’IABJIEHklII I-IO~BkiXKHO~ 30HbI 

&klOTkUllSl- Teqeme IIOn L@kTBtieM IIOBePXHOCTWOrO HaTfGKeHHR UHJfHH.I&pKY~CKO~O pacmaea, 

3aKfEJOYeHHOi.O MelKJty aByMR CTepX(HSCMH, KCCJlellOBaJlOCb n)‘TeM YUCSIeHHOrO ~elU~HI4Sl CTaUUO- 

HapHbIX ~~~~~H~~~bHbiX ypaBHeHU~ IIefleHOCa TeRna II KOJIii'ieCTBa IJBiDKeHKi. fly'iMCTbIii 

Ha~~BRHaf~B3~eKTpOHHbrllrny~VMpaCC~aTptrBanuCbnpiifSjr~~eHHO.npw He~~bUIKX 3HaWHURX 

nBiiXqUle$%CEJIbI BBepXHeil ~~CT~30HbI06~~30BbIB~~OCbO~HOB~~lllaI0~~CR KOlTbUO,a B HAXHe$t 

aonomse - era sepxanbme oro6paxeaae. np~ Bonee isb!coKsix 3sa'lemfltx mmicymeii cww 

06pa~ymcn BTOp~~Hbte 3JfeMeHTbi, n~Tep~eBa~~~e, o'fef3Mmi0, Ko~~aTe~~bH~e fismeiiue. 

Wsyrarrocb fame 3~~~H~e nsicna IlpaHnTmt, msmcem~ 30Abt If non~e~~o~ Ctfnbf zia npoaecc 

KoH~eKUnEI.OCHO3H~CWnpOTtrB~ea~e~epeHOCy MaccbI~~~~a~~~a~HoM pemme Tt?ieH#IIHa6JUO- 

~anocbcKopee3~e~rpe3~~hl,~e~~~~atpae~uaxpa3nenaTsep~oeTeno-mn~KocTb. 


